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Abstract

The analysis of the transverse magnetization decay is a well-established method to obtain information about network parameters of
elastomers or polymeric melts. The starting point is the scaling concept introduced by Cohen-Addad, which reduces the detailed description
of the atomic bond-vector motion to that of a larger scaled subchain motion. When considering polymer networks some simplifications in the
calculation of the NMR response are widely used. In the frozen bond assumption all the crosslink positions in a network are taken to be at
fixed points, with the intercrosslink network end-to-end vectors having a Gaussian distribution. In the second moment approximation it is
assumed that there is a Gaussian distribution of dipolar interactions, and additionally an exponential correlation function of the motion is
used. Both models are able to explain the non-exponential magnetization decay (FID of a Hahn-echo NMR experiment). We will compare
these different starting points to give some relations between them. Both models are tested by a NMR-relaxation experiment. © 2002

Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is well-known that NMR methods give much informa-
tion about the static and dynamic molecular properties of a
wide field of different materials. Polymeric materials above
their glass-transition temperature—for instance, polymeric
melts or elastomers—play a special role in that case: some
well-established NMR-methods like the Hahn-echo experi-
ment and its derivatives, for instance, the ‘reduced WISE’
("C-edited 'H transverse relaxation [1]), the ‘sine correla-
tion echo’, recently introduced by Callaghan and Samulski
[2], and the stimulated echo used by Kimmich et al. [3],
deliver a lot of information about the structure and the
relaxation behavior of these semi-solid materials. Usually
one wants to find the answers for questions concerning the
polymeric network (properties such as the number of
entanglements, crosslinks, and small scale strain induced
anisotropy) as well as the dynamic behavior of the
polymeric chains.

A probe for these parameters are the dipolar or the quad-
rupolar interactions ((8w)”) between neighboring spins
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(I = 1/2, e.g. protons) or between an electric field gradient
and spins I > 1/2, respectively. These interactions are
modified by molecular motions in a characteristic way:
Very fast motions of small molecular parts (v =
10_12,..., 107° s) are expected to be anisotropic at the
time scale of the dipolar interaction (vp = 1073 s), because
the end-to-end vector of the chains is more or less fixed at
the crosslink or entanglement points. These fast motions
pre-average the interaction to less than 1% of their value
in the rigid lattice, whereas large-scale motions reduce the
remaining part of the spin correlation at longer time scales
[4,5].

2. Theory

Some assumptions must be introduced for a compact
description of the magnetization decay, for instance, a
single chain model and the exclusion of intermolecular
interactions. Fast, liquid-like small-scale motions of a
chain, consisting of N freely jointed Kuhn statistical
segments of length a are assumed, where the square of the
network end-to-end vector R* = Na* and the contour length
Na > |R| (Fig. 1). These assumptions are identical for both
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Fig. 1. Illustration of the characteristic angles.

models discussed here. Other differences will be discussed
later.

2.1. The scaling of the dipolar coupling

The residual part of the dipolar interaction can be under-
stood using the concept of rescaling. It was introduced in
1942 by Kuhn and Griin [6] and was developed for NMR by
Cohen-Addad [7] and Gotlib [8] in the 70s and Brereton [9],
Sotta [1] and others more recently. In the case of a very fast
anisotropic motion (v > 10° s 1), caused by fixing the ends
of a chain of N Kuhn statistical segments at the crosslinks,
the second moment of the dipolar interaction can be reduced
by pre-averaging to the residual second moment M5™.

res_92kzl_rlk2
e =2 (y) 5 =v(x) M

withA = Moyzﬁ/(41-rr3) (homonuclear dipolar interaction
constant which is e.g. 1.29 X 10° s~' for the protons of an
ethylene unit), MEI = (9/2O)A2 second moment of the rigid
lattice, k= factor depending on the geometry of the
molecule [6]:

freely jointed chain and a direction of the dipolar inter-
action vector to the chain segment direction (parallel: kK =
3/5; perpendicular: kK = 3/10 (e.g. CH, bonds of ethylene)
methyl groups: k = 3/20 [8] (segment direction in the
HHH plane, of course no spin-pairs).

An anisotropy parameter ¢ = M5*/M3 is a measure of the
anisotropy of the rapid motion.
From the above we have that

Mges k\2 1
= f— —_ [ — 2
1= ( N) 7 ®)

in which the parameter N, is defined as N, = N/k with k as
the geometrical factor mentioned earlier. In practice the
second moment of the rigid lattice Mﬁl must be measured
at temperatures well below the glassy point and in a swollen
state (in a non-protonated solvent) to reduce interchain
interactions [4].

Assuming a simple two-exponential correlation function
G, (7) of the dipolar interaction (which can be true in the
case of stochastic Markoff processes), we have that in the
first few s the correlation function decreases rapidly from

Gm(’t) Ml;l

|

Fig. 2. Schematic course of the correlation function G,, = (8aw(r)-8w(t + 7))
based on a fast anisotropic and a slow isotropic motion.

the second moment of the rigid lattice MY to the reduced
value M5 = gM%, which can be further diminished by a
slower motional process (in weakly crosslinked systems;
Fig. 2).

In the following we refer to the two approaches for the
analysis of the transverse magnetization decay in elastomers
as ‘model A’ and ‘model B’:

(A) frozen limit. The crosslink motion is thought to be
very slow. So we can assume that the end-to-end vector R
is constant during the experiment. Further, a Gaussian
distribution of the end-to-end vector ensemble is assumed
[1]. In this case, the spin-pair approximation is used.
(B) second moment approximation. The time-dependent
interaction @ = 1/t jf) w(t")dr’ is assumed to be Gaussian-
distributed, but the end-to-end vector is considered as
constant. This model allows the moderate introduction
of some large scale motion for uncrosslinked or weakly
crosslinked systems [2,4,5].

The justification for the use of the ‘second moment
approximation’ will be discussed more in detail after
deriving the analytical expressions for both models and
comparing them.

2.2. The transversal magnetization decay

The starting point is the formula of the magnetization
decay in the x—y plane:
Model A [1]

M(r) = M, e(_’/TZ)(cos(th)) 3)
Model B [11]
M(t) = My{cos(@t)) @

wp denotes the frequency which is reduced corresponding to
the scaling behavior. The intercrosslink vector R has an
averaged squared value (R?) = Na* (freely jointed chain
with N statistical segments of length |a|). The reduction
factor of the interaction is according to Eq. (2) \/g = k/N =
R2k/(N2a2) due to fast anisotropic small-scale motions, so
that the reduced interaction is wgp = ,/g-A-P5(cos ) (v is
the angle between R and the magnetic field B, Fig. 1). R is
assumed to be constant over time (fixed crosslinks). The fact
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that the small-scale motions are fast (but not infinity fast) is
separately regarded by an exponential term in model A.
Model B, however, takes into account this dynamics by
the choice of the correlation function (see below). @ denotes
a time average of dipolar interaction about the typical NMR
measurement time of a special local chain conformation and
(...) denotes an average over all directions of R in A or over
all local conformations in B:

(cos(wgt)) = Re[J P(|R|)exp(int)dR] 3)

{cos(@r)) = <cos(ﬁ) o(t’ )dt')) (6)

Under the restrictions mentioned earlier both distributions,
for R or for @, are thought to be Gaussian:

3 3/2 _3R2
718D = () oo e ) @
S\ _2\\112 @’ -
P(@)do = Qu{®7)) exp( ) )dw (8)

For integration R is replaced by its components (x,Yy,z)
giving an expression wg = (kIN*a*)AQRZ — x> — yz)/2 for
the residual interaction. Under this assumption and using the
second moment approximation for model B an analytic
expression of the integrals Eqgs. (5) and (6) can be found
(see for model A: [1] and for model B: [11] for a detailed
calculation):

V1I+3s+r
V2r

M(t) = Mye "™ )

M(t) = M, exp{[(t - T)Gw(T)dT} (10)

with s = (A-1/3N,)*, r= (1 + s)V/I1 + 4s, and the auto-
correlation function G, = (Sw(t)-dw(t + 7)).

On condition that a short anisotropic (7¢) and a longer
isotropic (7,) motion exist, we can write for the auto-
correlation function of model B:

Gw(T)ZMEI[(l —q)exp(—l) +61€XP(—1)] (11)
Tt Ts

From Eq. (10) in the Anderson—Weiss equation one gets,

under the assumptions 7y < 7y, ¢ (¢ being the measurement

time) and for small values of ¢ (which is almost given in

practice; for instance, g is about 10~ for natural rubber [5D

the relaxation decay of model B:

M(t) = exp[— L qulﬁf<i)] (12)
T2 Ts

where 1/T, = M3 7; and f(t/7,) = exp(—t/7,) + t/7, — 1 [4].

Eq. (12) shows the same exponential pre-factor

exp(—t/T,) describing fast stochastic small-scale motions

as separately introduced in model A. Looking on model

A, the different residual interactions of the individual
end-to-end vectors are the origin of the magnetization
loss. In opposite to model B no correlation function is intro-
duced. In other words; the end-to-end vector (of the poly-
meric or intercrosslink chains) are accepted to be foo
immobile to have any influence on the relaxation; a likely
interpretation for strong crosslinked polymers, but it fails in
more softened systems.

2.3. Short time behavior

To get a relation between the two results Egs. (9) and
(12), it is useful to look on the short time limit (s < 1, r =
1+ 3s for model] A and < 7, for model B and
exp(—t/T,) — 1 for both models) of the magnetization

decay:
Model A:
3 A 7
M) = Mo(l — Es) ~ Mo(l T 5) (13)
Model B:
£ 1
M) = exp(—qMSE) ~1- Equlﬁ + .- (14)

The second derivation of the decay (Eqs. (13) and (14)) at
t = 0 gives the residual second moments.

Using Egs. (1) and (2) we get for the residual second
moments:

M5 = A’/3N? (15)
My

M5 = gMy = V2 (16)
(&

Of course, the result Eq. (16) is trivial, because it was intro-
duced for model B by formula (2).

However, in relation to this the parameter g for model A
is modified by a factor 20/27:

ME 20 1
=22 =2 17
=y TN 1n
1
_ b 18
1= N2 (18)

The weak dependence of the parameter ¢ on the model is not
astonishing because of the similar starting points. This
implies the practical use of both models for a wide variety
of rubber networks, starting at non-crosslinked systems
until to highly crosslinked ones (M. ~ 3000 g mol ' for
model B).

2.4. Justification of the use of the Anderson—Weiss relation

The crucial assumption for the treatment in model B is a
Gaussian-distributed dipolar interaction. In Ref. [10] an
analytical expression was found for the more general case
of non-Gaussian interactions in entangled or crosslinked
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systems based on a rescaled Rouse chain motion with Gaus-
sian distributed subchain co-ordinates. Besides a fast small
scaled motion (7y) a slower large scale motion of the
entanglements (7, ~ N? ) or crosslinks (7, — 00) was
assumed.

As one can see in Eq. (12), in the model B the second
moment approximation is applied only for the remaining
part (<107%) of the dipolar interaction after averaging by
the fast anisotropic motion. This part is responsible for the
initial slope of the transverse relaxation decay which has a
Gaussian-like character, experimentally as well as follow-
ing from Eq. (12). Obviously, the deviation of the spin-pair
approximation can be one reason for a Gaussian distribution
of the dipolar offsets. As described by Kimmich et al. [3], a
randomly mutual interaction of a large number of spins
yields to a Gaussian distribution in the ensemble of spin-
systems. Moreover, the violation of the assumption of
constant end-to-end vectors R in model B, i.e. in principle
a distribution of R like in model A, can be a further reason
for a Gaussian-like distribution of the dipolar interaction.
This gives the justification, although as an approximation, to
describe the first part of the spin-echo envelope by the
Anderson—Weiss formula, which gives a transition from a
liquid-like (exponential) to a solid-like (Gaussian) behavior.
This part is decisive for the determination of the residual
second moment and therefore of the intercrosslink chain
length (see below). The following signal parts are then
given by exponential components, leading to a complicated,
non-exponential signal, where the experimental curves can
be fitted adequately by the derived expressions (Eq. (23)).

Another important assumption, to come from the result of
the second moment approximation (which is equivalent to
the use of only the second order in the cumulant-expansion)
to the Anderson—Weiss equation (second term in Eq. (12)),
is an exponential correlation function, which seems to be
appropriate only for 7 << A, not fulfilled for the slower
correlation time 7, Our argument, to use nevertheless, an
exponential function is the following: the comparison of the
two models consider the initial time behavior of the curves,
that means short 7. Then the correlation function of the
thermal motion remains constant during the short integra-
tion interval 0,...,¢r of Eq. (10), and the integration can be
performed immediately without regarding the particular
form of the function.

At this point a remark is necessary about the use of the
phrase second moment approximation in Brereton papers
[9,10]. Although in Ref. [9] the Anderson—Weiss formula
is written, only the expression for the limit 7 < ¢ is used,
which gives of course the same exponential decay as the
BPP theory in the case w7> 1. The second moment
approximation is described there as to be able only for
explaining of exponential relaxation behavior. However,
the aim of the introduction of the Anderson—Weiss formula
was, as mentioned earlier, to close the gap between the
limiting cases Lorentzian (low-viscous liquid) and Gaussian
(rigid-amorphous solid) line shapes. It can also well

describe the region ¢ < 7, giving a Gaussian-like initial
part of the transversal relaxation curve.

2.5. Influence of a distribution of N, on model A

Assuming a crosslinking process totally independent on
neighbored crosslinks (a questionable assumption for
elastomeric networks), the distribution of the number of
intercrosslink chain segments decreases according to
P(N,) ~ p(1 — p), where p is the probability, that a
given monomer forms a crosslink [12]. In contrast, both
models deal with a single N, thought as a mean value of
a narrow Gaussian-like distribution Pg(N.) due to an
equally distributed crosslinking agent. To get a rough
estimation of the validity range of this simplification, we
calculate numerically the second moments dependence on
the (Gaussian) distribution width o. As a result, a remark-
able deviation (more than 10%) from the model of a
constant N, is observed only for distributions with standard
deviations o > 0.2N,. In these cases of wide distributions
the magnetization decay should be more rapid for the very
beginning due to the short chain fraction of the network and
this can explain some difficulties of the fit procedure in
practice. This will be continued more in a later work. The
problem in finding a distribution by NMR relaxation is,
that—despite the fact that all information is contained
principally in one measurement—the recalculation of a
distribution is nearly impossible (‘ill-posed problem’), due
to noisy signals.

2.6. Intercrosslink molar mass M.,

In the case of a well-determined (and sharp distributed)
chain length N, we can get the actual molecular mass
(chemical and physical links) between two adjacent
hindrances [1,4]:

Model A:
N coo M.,
M = =70 19)
Model B:
kcooM,
M = b \/ﬁm (20)

with the number of backbone bonds in a Kuhn segment ¢,
the molecular mass of a repetition unit M,,, and the number
of backbone bonds in one monomeric unit b.

2.7. Influence of entanglements (physical crosslinks)

It is obvious, that the crosslink density (~1/M,) is propor-
tional to the number of crosslinks and—using Eq. (2)—
directly proportional to the square root of the anisotropy
parameter. Due to the additivity of the crosslinks it is
straightforward to show the influence of physical entangle-
ments (0) and chemical crosslinks (CL) on the total amount
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of crosslinks:

1 1 1
NETNW @b
VacL = 4 = 4o (22)

The entanglement parameters (Ng ;qgo) can be measured
using uncrosslinked rubber [4]. To get M. instead of M.y
only the CL-signed values must be used in Egs. (19) and
(20) (chemical crosslinks).

2.8. Influence of dangling ends and sol part

It is realistic to differentiate between the more fixed inter-
crosslink chains, the more free dangling ends and the sol
part of a real network [5]. This can be done by a simple
addition of the several parts of the magnetization decay.
Then the relaxation decay gets the shape

M(t) = AM,(t) + BMg(t) + CM(t) 23)

with the intercrosslink chain part A, the dangling chain end
part B, and the free chain or sol part C. M4(f) can be (Eq. (9),
model A) or (Eq. (12), model B)—in dependence on the
crosslink density. The highly mobile dangling chain end
part Mp(¢) should be discussed in terms of model B using
a relative small g (g4 > gp) [5], but often it can be described
by a simple exponential decay. This is generally possible for
the sol part M(#) which should describe the long time tail of
the decay. In both cases this treatment is of course in agree-
ment with Ref. [10] appropriately. Though the parts B and C
are discussed for model B only, they could be considered for
model A, too. Conversely, model B can be restricted to the
intercrosslink chain part A only (if one is interested in
nothing but the M.-value). Of course, inclusion of the
dangling chain end part B (or even the sol part C)—and
therefore measurements about a larger time region (compare
the time scales in Figs. 3 and 4)—results in additional fit
parameters giving supplementary information.

3. Samples and experiment

Measurements were performed on a rubber series to
compare the two models: -BR-system: (cis-butadiene
rubber) (a) 0.5 phr, (b) 0.8 phr, (c) 1.0 phr, and (d) 1.5 phr
DCP.

For more detailed information about vulcanization
process and sample characterization by mechanical stress—
strain measurements, and NMR characterization see
Refs. [13,14].

NMR: 'H Hahn-echo measurements give the experimen-
tal basis for the parameter calculations in models A and B.
The measurements were performed on a 400 MHz spectro-
meter. (Unity, Varian) at 60 °C. Fig. 3 (model A) and Fig. 4
(model B) show the experimental data points and the fit
curves [13].

For the fit procedure based on model B a second compo-

1 "H Hahn echo decay at T = 60°C =

parameter fit model A ™
cis-BR R

0.5phr DCP  N,= 337
0.8phrDCP  N.= 100
1.0phrDCP N.= 77

M)
oy 1.5phrDCP  Ng= 57

M(0)

t {echo time) in ms

Fig. 3. 'H Hahn-echo decay and parameter fit (model A) of cis-BR.

nent for the dangling chain ends was used (Part B in
Eq. (23)). It allows a good fit also for the long time tail
(3 ms — 20 ms), but having no influence on the network
parameters (g, M., or N,), which are the relevant ones for
the model comparison. From Table 1 it can be seen that the
calculated parameters M. (with the exception of the weak
crosslinked system 0.5 phr DCP, which is far away from the
assumption of a fixed crosslink position) of the two models,
and also from the mechanical stress—strain measurements,
correspond well. Like expected, model A shows better fit
results for higher crosslinked systems.

4. Conclusions

We have discussed the basics and the limitations of two
models for the interpretation of NMR-echo measurements.
The idea of both models, which can be seen as two limiting
conditions known as ‘frozen limit’ and second moment
approximation: Both correlate the non-exponential decay
of the transverse magnetization with the residual dipolar
interactions of subchains (i.e. intercrosslink chains) in the
network and in this way determine the crosslink density.

Model A assumes a fixed network of Gaussian distributed
end-to-end vectors of the intercrosslink chains, imaginable
only in strong crosslinked systems. The resulting differences
of the residual dipolar coupling, which depend on the vector
direction and length in the magnetic field, are the reason of
the phase loss in an NMR-echo experiment, leading to a
non-exponential echo decay.

In model B the length of the end-to-end vector is fixed,

1 | 'H Hahn echo decay at T = 60°C

parameter fit model B ®m  05phrDCP M= 8000 g/mol
3 cis-BR ® 0.8phrDCP M= 5000 g/mol
M(1) ‘a; + 1.0phrDCP M = 4000 g/mol
M(0) g 1.5 phr DCP  Mc = 3400 g/mol
"L._‘.‘.
] .
0.1 N 1\-\_.‘_‘
ey ., e
Aty
*h L] .
. ,
0.01 4 i
L BRI R ) I B P B B N U B TR Y AT M R L o |
[} 5 10 15 2

t (echo time) in ms

Fig. 4. "H Hahn-echo decay and parameter fit (model B) of cis-BR (loga-
rithmic plot). Take notice of the longer time basis in relation to Fig. 3.
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Table 1

Comparison of the resulting M, for crosslinked cis-BR (The material constants used for the calculation are as follows [4,15]: k = 3/10 (due to the main
contribution of the CH,-spin pair); c,, = 5.45; My =123%x10* ms~2; M, =54;and b =4)

DCP-content (phr) N, (model A)

M, (model A) (g mol ")

M, (model B) (g mol ") M, (mechan.) (g mol ")

0.5 337 18 000
0.8 100 5400
1.0 77 4200
1.5 57 3100

8000 7590
5000 5000
4000 3230
3400 3310

however, the dipolar interactions are assumed to have a
Gaussian distribution. Like in model A, the scaling concept
is used, which reduces the originally dipolar interaction
between neighbored spins to weaker residual interactions
on the scale of independent (intercrosslinked) chain
segments. In contrast to the frozen limit the entanglements
and/or crosslinks are allowed to reorientate.

We showed by a comparison of the residual second
moments, which exhibit only a difference by a factor of
(27/20), that there is only a small effect on the relaxation.
As a consequence the mean value of intercrosslink chain
length M., calculated from the second moment of the very
beginning of the relaxation decay, differs only by
(20/27)""* = (.86 between the two models. Due to this and
despite the mentioned restrictions, both models are suitable
for a wide range of crosslinked systems.
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